\(\int \frac {(e \sec (c+d x))^{5/2}}{(a+i a \tan (c+d x))^{3/2}} \, dx\) [424]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F(-1)]
   Maxima [B] (verification not implemented)
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 30, antiderivative size = 365 \[ \int \frac {(e \sec (c+d x))^{5/2}}{(a+i a \tan (c+d x))^{3/2}} \, dx=-\frac {i \sqrt {2} e^{5/2} \arctan \left (1-\frac {\sqrt {2} \sqrt {e} \sqrt {a+i a \tan (c+d x)}}{\sqrt {a} \sqrt {e \sec (c+d x)}}\right )}{a^{3/2} d}+\frac {i \sqrt {2} e^{5/2} \arctan \left (1+\frac {\sqrt {2} \sqrt {e} \sqrt {a+i a \tan (c+d x)}}{\sqrt {a} \sqrt {e \sec (c+d x)}}\right )}{a^{3/2} d}+\frac {i e^{5/2} \log \left (a-\frac {\sqrt {2} \sqrt {a} \sqrt {e} \sqrt {a+i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}+\cos (c+d x) (a+i a \tan (c+d x))\right )}{\sqrt {2} a^{3/2} d}-\frac {i e^{5/2} \log \left (a+\frac {\sqrt {2} \sqrt {a} \sqrt {e} \sqrt {a+i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}+\cos (c+d x) (a+i a \tan (c+d x))\right )}{\sqrt {2} a^{3/2} d}+\frac {4 i e^2 \sqrt {e \sec (c+d x)}}{a d \sqrt {a+i a \tan (c+d x)}} \]

[Out]

1/2*I*e^(5/2)*ln(a-2^(1/2)*a^(1/2)*e^(1/2)*(a+I*a*tan(d*x+c))^(1/2)/(e*sec(d*x+c))^(1/2)+cos(d*x+c)*(a+I*a*tan
(d*x+c)))/a^(3/2)/d*2^(1/2)-1/2*I*e^(5/2)*ln(a+2^(1/2)*a^(1/2)*e^(1/2)*(a+I*a*tan(d*x+c))^(1/2)/(e*sec(d*x+c))
^(1/2)+cos(d*x+c)*(a+I*a*tan(d*x+c)))/a^(3/2)/d*2^(1/2)-I*e^(5/2)*arctan(1-2^(1/2)*e^(1/2)*(a+I*a*tan(d*x+c))^
(1/2)/a^(1/2)/(e*sec(d*x+c))^(1/2))*2^(1/2)/a^(3/2)/d+I*e^(5/2)*arctan(1+2^(1/2)*e^(1/2)*(a+I*a*tan(d*x+c))^(1
/2)/a^(1/2)/(e*sec(d*x+c))^(1/2))*2^(1/2)/a^(3/2)/d+4*I*e^2*(e*sec(d*x+c))^(1/2)/a/d/(a+I*a*tan(d*x+c))^(1/2)

Rubi [A] (verified)

Time = 0.38 (sec) , antiderivative size = 365, normalized size of antiderivative = 1.00, number of steps used = 11, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.267, Rules used = {3581, 3576, 303, 1176, 631, 210, 1179, 642} \[ \int \frac {(e \sec (c+d x))^{5/2}}{(a+i a \tan (c+d x))^{3/2}} \, dx=-\frac {i \sqrt {2} e^{5/2} \arctan \left (1-\frac {\sqrt {2} \sqrt {e} \sqrt {a+i a \tan (c+d x)}}{\sqrt {a} \sqrt {e \sec (c+d x)}}\right )}{a^{3/2} d}+\frac {i \sqrt {2} e^{5/2} \arctan \left (1+\frac {\sqrt {2} \sqrt {e} \sqrt {a+i a \tan (c+d x)}}{\sqrt {a} \sqrt {e \sec (c+d x)}}\right )}{a^{3/2} d}+\frac {i e^{5/2} \log \left (-\frac {\sqrt {2} \sqrt {a} \sqrt {e} \sqrt {a+i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}+\cos (c+d x) (a+i a \tan (c+d x))+a\right )}{\sqrt {2} a^{3/2} d}-\frac {i e^{5/2} \log \left (\frac {\sqrt {2} \sqrt {a} \sqrt {e} \sqrt {a+i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}+\cos (c+d x) (a+i a \tan (c+d x))+a\right )}{\sqrt {2} a^{3/2} d}+\frac {4 i e^2 \sqrt {e \sec (c+d x)}}{a d \sqrt {a+i a \tan (c+d x)}} \]

[In]

Int[(e*Sec[c + d*x])^(5/2)/(a + I*a*Tan[c + d*x])^(3/2),x]

[Out]

((-I)*Sqrt[2]*e^(5/2)*ArcTan[1 - (Sqrt[2]*Sqrt[e]*Sqrt[a + I*a*Tan[c + d*x]])/(Sqrt[a]*Sqrt[e*Sec[c + d*x]])])
/(a^(3/2)*d) + (I*Sqrt[2]*e^(5/2)*ArcTan[1 + (Sqrt[2]*Sqrt[e]*Sqrt[a + I*a*Tan[c + d*x]])/(Sqrt[a]*Sqrt[e*Sec[
c + d*x]])])/(a^(3/2)*d) + (I*e^(5/2)*Log[a - (Sqrt[2]*Sqrt[a]*Sqrt[e]*Sqrt[a + I*a*Tan[c + d*x]])/Sqrt[e*Sec[
c + d*x]] + Cos[c + d*x]*(a + I*a*Tan[c + d*x])])/(Sqrt[2]*a^(3/2)*d) - (I*e^(5/2)*Log[a + (Sqrt[2]*Sqrt[a]*Sq
rt[e]*Sqrt[a + I*a*Tan[c + d*x]])/Sqrt[e*Sec[c + d*x]] + Cos[c + d*x]*(a + I*a*Tan[c + d*x])])/(Sqrt[2]*a^(3/2
)*d) + ((4*I)*e^2*Sqrt[e*Sec[c + d*x]])/(a*d*Sqrt[a + I*a*Tan[c + d*x]])

Rule 210

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^(-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])
], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 303

Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[a/b, 2]], s = Denominator[Rt[a/b, 2]]},
Dist[1/(2*s), Int[(r + s*x^2)/(a + b*x^4), x], x] - Dist[1/(2*s), Int[(r - s*x^2)/(a + b*x^4), x], x]] /; Free
Q[{a, b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] && AtomQ[SplitProduct[SumBaseQ,
 b]]))

Rule 631

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[a*(c/b^2)]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 642

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[d*(Log[RemoveContent[a + b*x +
c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 1176

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[2*(d/e), 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 1179

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[-2*(d/e), 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rule 3576

Int[Sqrt[(d_.)*sec[(e_.) + (f_.)*(x_)]]*Sqrt[(a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[-4*b*(d^
2/f), Subst[Int[x^2/(a^2 + d^2*x^4), x], x, Sqrt[a + b*Tan[e + f*x]]/Sqrt[d*Sec[e + f*x]]], x] /; FreeQ[{a, b,
 d, e, f}, x] && EqQ[a^2 + b^2, 0]

Rule 3581

Int[((d_.)*sec[(e_.) + (f_.)*(x_)])^(m_)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[2*d^2*
(d*Sec[e + f*x])^(m - 2)*((a + b*Tan[e + f*x])^(n + 1)/(b*f*(m + 2*n))), x] - Dist[d^2*((m - 2)/(b^2*(m + 2*n)
)), Int[(d*Sec[e + f*x])^(m - 2)*(a + b*Tan[e + f*x])^(n + 2), x], x] /; FreeQ[{a, b, d, e, f, m}, x] && EqQ[a
^2 + b^2, 0] && LtQ[n, -1] && ((ILtQ[n/2, 0] && IGtQ[m - 1/2, 0]) || EqQ[n, -2] || IGtQ[m + n, 0] || (Integers
Q[n, m + 1/2] && GtQ[2*m + n + 1, 0])) && IntegerQ[2*m]

Rubi steps \begin{align*} \text {integral}& = \frac {4 i e^2 \sqrt {e \sec (c+d x)}}{a d \sqrt {a+i a \tan (c+d x)}}-\frac {e^2 \int \sqrt {e \sec (c+d x)} \sqrt {a+i a \tan (c+d x)} \, dx}{a^2} \\ & = \frac {4 i e^2 \sqrt {e \sec (c+d x)}}{a d \sqrt {a+i a \tan (c+d x)}}+\frac {\left (4 i e^4\right ) \text {Subst}\left (\int \frac {x^2}{a^2+e^2 x^4} \, dx,x,\frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}\right )}{a d} \\ & = \frac {4 i e^2 \sqrt {e \sec (c+d x)}}{a d \sqrt {a+i a \tan (c+d x)}}-\frac {\left (2 i e^3\right ) \text {Subst}\left (\int \frac {a-e x^2}{a^2+e^2 x^4} \, dx,x,\frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}\right )}{a d}+\frac {\left (2 i e^3\right ) \text {Subst}\left (\int \frac {a+e x^2}{a^2+e^2 x^4} \, dx,x,\frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}\right )}{a d} \\ & = \frac {4 i e^2 \sqrt {e \sec (c+d x)}}{a d \sqrt {a+i a \tan (c+d x)}}+\frac {\left (i e^2\right ) \text {Subst}\left (\int \frac {1}{\frac {a}{e}-\frac {\sqrt {2} \sqrt {a} x}{\sqrt {e}}+x^2} \, dx,x,\frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}\right )}{a d}+\frac {\left (i e^2\right ) \text {Subst}\left (\int \frac {1}{\frac {a}{e}+\frac {\sqrt {2} \sqrt {a} x}{\sqrt {e}}+x^2} \, dx,x,\frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}\right )}{a d}+\frac {\left (i e^{5/2}\right ) \text {Subst}\left (\int \frac {\frac {\sqrt {2} \sqrt {a}}{\sqrt {e}}+2 x}{-\frac {a}{e}-\frac {\sqrt {2} \sqrt {a} x}{\sqrt {e}}-x^2} \, dx,x,\frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}\right )}{\sqrt {2} a^{3/2} d}+\frac {\left (i e^{5/2}\right ) \text {Subst}\left (\int \frac {\frac {\sqrt {2} \sqrt {a}}{\sqrt {e}}-2 x}{-\frac {a}{e}+\frac {\sqrt {2} \sqrt {a} x}{\sqrt {e}}-x^2} \, dx,x,\frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}\right )}{\sqrt {2} a^{3/2} d} \\ & = \frac {i e^{5/2} \log \left (a-\frac {\sqrt {2} \sqrt {a} \sqrt {e} \sqrt {a+i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}+\cos (c+d x) (a+i a \tan (c+d x))\right )}{\sqrt {2} a^{3/2} d}-\frac {i e^{5/2} \log \left (a+\frac {\sqrt {2} \sqrt {a} \sqrt {e} \sqrt {a+i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}+\cos (c+d x) (a+i a \tan (c+d x))\right )}{\sqrt {2} a^{3/2} d}+\frac {4 i e^2 \sqrt {e \sec (c+d x)}}{a d \sqrt {a+i a \tan (c+d x)}}+\frac {\left (i \sqrt {2} e^{5/2}\right ) \text {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1-\frac {\sqrt {2} \sqrt {e} \sqrt {a+i a \tan (c+d x)}}{\sqrt {a} \sqrt {e \sec (c+d x)}}\right )}{a^{3/2} d}-\frac {\left (i \sqrt {2} e^{5/2}\right ) \text {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1+\frac {\sqrt {2} \sqrt {e} \sqrt {a+i a \tan (c+d x)}}{\sqrt {a} \sqrt {e \sec (c+d x)}}\right )}{a^{3/2} d} \\ & = -\frac {i \sqrt {2} e^{5/2} \arctan \left (1-\frac {\sqrt {2} \sqrt {e} \sqrt {a+i a \tan (c+d x)}}{\sqrt {a} \sqrt {e \sec (c+d x)}}\right )}{a^{3/2} d}+\frac {i \sqrt {2} e^{5/2} \arctan \left (1+\frac {\sqrt {2} \sqrt {e} \sqrt {a+i a \tan (c+d x)}}{\sqrt {a} \sqrt {e \sec (c+d x)}}\right )}{a^{3/2} d}+\frac {i e^{5/2} \log \left (a-\frac {\sqrt {2} \sqrt {a} \sqrt {e} \sqrt {a+i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}+\cos (c+d x) (a+i a \tan (c+d x))\right )}{\sqrt {2} a^{3/2} d}-\frac {i e^{5/2} \log \left (a+\frac {\sqrt {2} \sqrt {a} \sqrt {e} \sqrt {a+i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}+\cos (c+d x) (a+i a \tan (c+d x))\right )}{\sqrt {2} a^{3/2} d}+\frac {4 i e^2 \sqrt {e \sec (c+d x)}}{a d \sqrt {a+i a \tan (c+d x)}} \\ \end{align*}

Mathematica [A] (verified)

Time = 4.03 (sec) , antiderivative size = 338, normalized size of antiderivative = 0.93 \[ \int \frac {(e \sec (c+d x))^{5/2}}{(a+i a \tan (c+d x))^{3/2}} \, dx=\frac {e (e \sec (c+d x))^{3/2} (\cos (d x)+i \sin (d x))^2 \left (\cos (d x) (4 i \cos (c)-4 \sin (c))+4 (\cos (c)+i \sin (c)) \sin (d x)+\frac {2 \left (\text {arctanh}\left (\frac {\sqrt {1-i \cos (c)+\sin (c)} \sqrt {i-\tan \left (\frac {d x}{2}\right )}}{\sqrt {-1-i \cos (c)-\sin (c)} \sqrt {i+\tan \left (\frac {d x}{2}\right )}}\right ) \sqrt {-1-i \cos (c)-\sin (c)} \sqrt {1+i \cos (c)-\sin (c)}-\text {arctanh}\left (\frac {\sqrt {1+i \cos (c)-\sin (c)} \sqrt {i-\tan \left (\frac {d x}{2}\right )}}{\sqrt {-1+i \cos (c)+\sin (c)} \sqrt {i+\tan \left (\frac {d x}{2}\right )}}\right ) \sqrt {1-i \cos (c)+\sin (c)} \sqrt {-1+i \cos (c)+\sin (c)}\right ) (\cos (2 c)+i \sin (2 c)) \sqrt {i+\tan \left (\frac {d x}{2}\right )}}{\sqrt {1+\cos (2 c)+i \sin (2 c)} \sqrt {i-\tan \left (\frac {d x}{2}\right )}}\right )}{d (a+i a \tan (c+d x))^{3/2}} \]

[In]

Integrate[(e*Sec[c + d*x])^(5/2)/(a + I*a*Tan[c + d*x])^(3/2),x]

[Out]

(e*(e*Sec[c + d*x])^(3/2)*(Cos[d*x] + I*Sin[d*x])^2*(Cos[d*x]*((4*I)*Cos[c] - 4*Sin[c]) + 4*(Cos[c] + I*Sin[c]
)*Sin[d*x] + (2*(ArcTanh[(Sqrt[1 - I*Cos[c] + Sin[c]]*Sqrt[I - Tan[(d*x)/2]])/(Sqrt[-1 - I*Cos[c] - Sin[c]]*Sq
rt[I + Tan[(d*x)/2]])]*Sqrt[-1 - I*Cos[c] - Sin[c]]*Sqrt[1 + I*Cos[c] - Sin[c]] - ArcTanh[(Sqrt[1 + I*Cos[c] -
 Sin[c]]*Sqrt[I - Tan[(d*x)/2]])/(Sqrt[-1 + I*Cos[c] + Sin[c]]*Sqrt[I + Tan[(d*x)/2]])]*Sqrt[1 - I*Cos[c] + Si
n[c]]*Sqrt[-1 + I*Cos[c] + Sin[c]])*(Cos[2*c] + I*Sin[2*c])*Sqrt[I + Tan[(d*x)/2]])/(Sqrt[1 + Cos[2*c] + I*Sin
[2*c]]*Sqrt[I - Tan[(d*x)/2]])))/(d*(a + I*a*Tan[c + d*x])^(3/2))

Maple [B] (verified)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 1089 vs. \(2 (285 ) = 570\).

Time = 16.18 (sec) , antiderivative size = 1090, normalized size of antiderivative = 2.99

method result size
default \(\text {Expression too large to display}\) \(1090\)

[In]

int((e*sec(d*x+c))^(5/2)/(a+I*a*tan(d*x+c))^(3/2),x,method=_RETURNVERBOSE)

[Out]

1/2/d*e^2*(e*sec(d*x+c))^(1/2)/(tan(d*x+c)-I)/a/(a*(1+I*tan(d*x+c)))^(1/2)/(1/(cos(d*x+c)+1))^(1/2)/(cos(d*x+c
)+1)*(8*(1/(cos(d*x+c)+1))^(1/2)*cos(d*x+c)+2*arctanh(1/2*(-cos(d*x+c)+sin(d*x+c)-1)/(cos(d*x+c)+1)/(1/(cos(d*
x+c)+1))^(1/2))*cos(d*x+c)-2*sin(d*x+c)*arctanh(1/2*(-cos(d*x+c)+sin(d*x+c)-1)/(cos(d*x+c)+1)/(1/(cos(d*x+c)+1
))^(1/2))-2*arctanh(1/2*(cos(d*x+c)+sin(d*x+c)+1)/(cos(d*x+c)+1)/(1/(cos(d*x+c)+1))^(1/2))*cos(d*x+c)-2*sin(d*
x+c)*arctanh(1/2*(cos(d*x+c)+sin(d*x+c)+1)/(cos(d*x+c)+1)/(1/(cos(d*x+c)+1))^(1/2))+8*(1/(cos(d*x+c)+1))^(1/2)
+2*I*cos(d*x+c)*arctanh(1/2*(cos(d*x+c)+sin(d*x+c)+1)/(cos(d*x+c)+1)/(1/(cos(d*x+c)+1))^(1/2))+arctanh(1/2*(-c
os(d*x+c)+sin(d*x+c)-1)/(cos(d*x+c)+1)/(1/(cos(d*x+c)+1))^(1/2))-tan(d*x+c)*arctanh(1/2*(-cos(d*x+c)+sin(d*x+c
)-1)/(cos(d*x+c)+1)/(1/(cos(d*x+c)+1))^(1/2))-arctanh(1/2*(cos(d*x+c)+sin(d*x+c)+1)/(cos(d*x+c)+1)/(1/(cos(d*x
+c)+1))^(1/2))-tan(d*x+c)*arctanh(1/2*(cos(d*x+c)+sin(d*x+c)+1)/(cos(d*x+c)+1)/(1/(cos(d*x+c)+1))^(1/2))-I*sec
(d*x+c)*arctanh(1/2*(-cos(d*x+c)+sin(d*x+c)-1)/(cos(d*x+c)+1)/(1/(cos(d*x+c)+1))^(1/2))+I*arctanh(1/2*(-cos(d*
x+c)+sin(d*x+c)-1)/(cos(d*x+c)+1)/(1/(cos(d*x+c)+1))^(1/2))+I*tan(d*x+c)*arctanh(1/2*(-cos(d*x+c)+sin(d*x+c)-1
)/(cos(d*x+c)+1)/(1/(cos(d*x+c)+1))^(1/2))-I*tan(d*x+c)*arctanh(1/2*(cos(d*x+c)+sin(d*x+c)+1)/(cos(d*x+c)+1)/(
1/(cos(d*x+c)+1))^(1/2))+2*I*arctanh(1/2*(-cos(d*x+c)+sin(d*x+c)-1)/(cos(d*x+c)+1)/(1/(cos(d*x+c)+1))^(1/2))*s
in(d*x+c)-sec(d*x+c)*arctanh(1/2*(-cos(d*x+c)+sin(d*x+c)-1)/(cos(d*x+c)+1)/(1/(cos(d*x+c)+1))^(1/2))+sec(d*x+c
)*arctanh(1/2*(cos(d*x+c)+sin(d*x+c)+1)/(cos(d*x+c)+1)/(1/(cos(d*x+c)+1))^(1/2))+8*I*tan(d*x+c)*(1/(cos(d*x+c)
+1))^(1/2)+8*I*sin(d*x+c)*(1/(cos(d*x+c)+1))^(1/2)-2*I*arctanh(1/2*(cos(d*x+c)+sin(d*x+c)+1)/(cos(d*x+c)+1)/(1
/(cos(d*x+c)+1))^(1/2))*sin(d*x+c)-I*sec(d*x+c)*arctanh(1/2*(cos(d*x+c)+sin(d*x+c)+1)/(cos(d*x+c)+1)/(1/(cos(d
*x+c)+1))^(1/2))+2*I*cos(d*x+c)*arctanh(1/2*(-cos(d*x+c)+sin(d*x+c)-1)/(cos(d*x+c)+1)/(1/(cos(d*x+c)+1))^(1/2)
)+I*arctanh(1/2*(cos(d*x+c)+sin(d*x+c)+1)/(cos(d*x+c)+1)/(1/(cos(d*x+c)+1))^(1/2)))

Fricas [A] (verification not implemented)

none

Time = 0.26 (sec) , antiderivative size = 539, normalized size of antiderivative = 1.48 \[ \int \frac {(e \sec (c+d x))^{5/2}}{(a+i a \tan (c+d x))^{3/2}} \, dx=-\frac {{\left (a^{2} d \sqrt {\frac {4 i \, e^{5}}{a^{3} d^{2}}} e^{\left (i \, d x + i \, c\right )} \log \left (\frac {a^{2} d \sqrt {\frac {4 i \, e^{5}}{a^{3} d^{2}}} + 2 \, {\left (e^{2} e^{\left (2 i \, d x + 2 i \, c\right )} + e^{2}\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {e}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} e^{\left (\frac {1}{2} i \, d x + \frac {1}{2} i \, c\right )}}{e^{2}}\right ) - a^{2} d \sqrt {\frac {4 i \, e^{5}}{a^{3} d^{2}}} e^{\left (i \, d x + i \, c\right )} \log \left (-\frac {a^{2} d \sqrt {\frac {4 i \, e^{5}}{a^{3} d^{2}}} - 2 \, {\left (e^{2} e^{\left (2 i \, d x + 2 i \, c\right )} + e^{2}\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {e}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} e^{\left (\frac {1}{2} i \, d x + \frac {1}{2} i \, c\right )}}{e^{2}}\right ) - a^{2} d \sqrt {-\frac {4 i \, e^{5}}{a^{3} d^{2}}} e^{\left (i \, d x + i \, c\right )} \log \left (\frac {a^{2} d \sqrt {-\frac {4 i \, e^{5}}{a^{3} d^{2}}} + 2 \, {\left (e^{2} e^{\left (2 i \, d x + 2 i \, c\right )} + e^{2}\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {e}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} e^{\left (\frac {1}{2} i \, d x + \frac {1}{2} i \, c\right )}}{e^{2}}\right ) + a^{2} d \sqrt {-\frac {4 i \, e^{5}}{a^{3} d^{2}}} e^{\left (i \, d x + i \, c\right )} \log \left (-\frac {a^{2} d \sqrt {-\frac {4 i \, e^{5}}{a^{3} d^{2}}} - 2 \, {\left (e^{2} e^{\left (2 i \, d x + 2 i \, c\right )} + e^{2}\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {e}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} e^{\left (\frac {1}{2} i \, d x + \frac {1}{2} i \, c\right )}}{e^{2}}\right ) + 8 \, {\left (-i \, e^{2} e^{\left (2 i \, d x + 2 i \, c\right )} - i \, e^{2}\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {e}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} e^{\left (\frac {1}{2} i \, d x + \frac {1}{2} i \, c\right )}\right )} e^{\left (-i \, d x - i \, c\right )}}{2 \, a^{2} d} \]

[In]

integrate((e*sec(d*x+c))^(5/2)/(a+I*a*tan(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

-1/2*(a^2*d*sqrt(4*I*e^5/(a^3*d^2))*e^(I*d*x + I*c)*log((a^2*d*sqrt(4*I*e^5/(a^3*d^2)) + 2*(e^2*e^(2*I*d*x + 2
*I*c) + e^2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt(e/(e^(2*I*d*x + 2*I*c) + 1))*e^(1/2*I*d*x + 1/2*I*c))/e^2)
 - a^2*d*sqrt(4*I*e^5/(a^3*d^2))*e^(I*d*x + I*c)*log(-(a^2*d*sqrt(4*I*e^5/(a^3*d^2)) - 2*(e^2*e^(2*I*d*x + 2*I
*c) + e^2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt(e/(e^(2*I*d*x + 2*I*c) + 1))*e^(1/2*I*d*x + 1/2*I*c))/e^2) -
 a^2*d*sqrt(-4*I*e^5/(a^3*d^2))*e^(I*d*x + I*c)*log((a^2*d*sqrt(-4*I*e^5/(a^3*d^2)) + 2*(e^2*e^(2*I*d*x + 2*I*
c) + e^2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt(e/(e^(2*I*d*x + 2*I*c) + 1))*e^(1/2*I*d*x + 1/2*I*c))/e^2) +
a^2*d*sqrt(-4*I*e^5/(a^3*d^2))*e^(I*d*x + I*c)*log(-(a^2*d*sqrt(-4*I*e^5/(a^3*d^2)) - 2*(e^2*e^(2*I*d*x + 2*I*
c) + e^2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt(e/(e^(2*I*d*x + 2*I*c) + 1))*e^(1/2*I*d*x + 1/2*I*c))/e^2) +
8*(-I*e^2*e^(2*I*d*x + 2*I*c) - I*e^2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt(e/(e^(2*I*d*x + 2*I*c) + 1))*e^(
1/2*I*d*x + 1/2*I*c))*e^(-I*d*x - I*c)/(a^2*d)

Sympy [F(-1)]

Timed out. \[ \int \frac {(e \sec (c+d x))^{5/2}}{(a+i a \tan (c+d x))^{3/2}} \, dx=\text {Timed out} \]

[In]

integrate((e*sec(d*x+c))**(5/2)/(a+I*a*tan(d*x+c))**(3/2),x)

[Out]

Timed out

Maxima [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 778 vs. \(2 (273) = 546\).

Time = 0.47 (sec) , antiderivative size = 778, normalized size of antiderivative = 2.13 \[ \int \frac {(e \sec (c+d x))^{5/2}}{(a+i a \tan (c+d x))^{3/2}} \, dx=\text {Too large to display} \]

[In]

integrate((e*sec(d*x+c))^(5/2)/(a+I*a*tan(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

-1/4*(2*I*sqrt(2)*e^2*arctan2(sqrt(2)*cos(1/2*d*x + 1/2*c) + 1, sqrt(2)*sin(1/2*d*x + 1/2*c) + 1) + 2*I*sqrt(2
)*e^2*arctan2(sqrt(2)*cos(1/2*d*x + 1/2*c) + 1, -sqrt(2)*sin(1/2*d*x + 1/2*c) + 1) + 2*I*sqrt(2)*e^2*arctan2(s
qrt(2)*cos(1/2*d*x + 1/2*c) - 1, sqrt(2)*sin(1/2*d*x + 1/2*c) + 1) + 2*I*sqrt(2)*e^2*arctan2(sqrt(2)*cos(1/2*d
*x + 1/2*c) - 1, -sqrt(2)*sin(1/2*d*x + 1/2*c) + 1) + 2*sqrt(2)*e^2*arctan2(sqrt(2)*sin(1/2*d*x + 1/2*c) + sin
(d*x + c), sqrt(2)*cos(1/2*d*x + 1/2*c) + cos(d*x + c) + 1) - 2*sqrt(2)*e^2*arctan2(-sqrt(2)*sin(1/2*d*x + 1/2
*c) + sin(d*x + c), -sqrt(2)*cos(1/2*d*x + 1/2*c) + cos(d*x + c) + 1) + I*sqrt(2)*e^2*log(2*sqrt(2)*sin(d*x +
c)*sin(1/2*d*x + 1/2*c) + 2*(sqrt(2)*cos(1/2*d*x + 1/2*c) + 1)*cos(d*x + c) + cos(d*x + c)^2 + 2*cos(1/2*d*x +
 1/2*c)^2 + sin(d*x + c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 1) - I*sqrt(2)*e^2*lo
g(-2*sqrt(2)*sin(d*x + c)*sin(1/2*d*x + 1/2*c) - 2*(sqrt(2)*cos(1/2*d*x + 1/2*c) - 1)*cos(d*x + c) + cos(d*x +
 c)^2 + 2*cos(1/2*d*x + 1/2*c)^2 + sin(d*x + c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2*c)
+ 1) + sqrt(2)*e^2*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt(2)*cos(1/2*d*x + 1/2*c) +
2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) - sqrt(2)*e^2*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*
sqrt(2)*cos(1/2*d*x + 1/2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) + sqrt(2)*e^2*log(2*cos(1/2*d*x + 1/2*c)^2
+ 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) - sqrt(2)*e^
2*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2*c) - 2*sqrt(2)*sin(1/2
*d*x + 1/2*c) + 2) - 16*I*e^2*cos(1/2*d*x + 1/2*c) - 16*e^2*sin(1/2*d*x + 1/2*c))*sqrt(e)/(a^(3/2)*d)

Giac [F]

\[ \int \frac {(e \sec (c+d x))^{5/2}}{(a+i a \tan (c+d x))^{3/2}} \, dx=\int { \frac {\left (e \sec \left (d x + c\right )\right )^{\frac {5}{2}}}{{\left (i \, a \tan \left (d x + c\right ) + a\right )}^{\frac {3}{2}}} \,d x } \]

[In]

integrate((e*sec(d*x+c))^(5/2)/(a+I*a*tan(d*x+c))^(3/2),x, algorithm="giac")

[Out]

integrate((e*sec(d*x + c))^(5/2)/(I*a*tan(d*x + c) + a)^(3/2), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {(e \sec (c+d x))^{5/2}}{(a+i a \tan (c+d x))^{3/2}} \, dx=\int \frac {{\left (\frac {e}{\cos \left (c+d\,x\right )}\right )}^{5/2}}{{\left (a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}\right )}^{3/2}} \,d x \]

[In]

int((e/cos(c + d*x))^(5/2)/(a + a*tan(c + d*x)*1i)^(3/2),x)

[Out]

int((e/cos(c + d*x))^(5/2)/(a + a*tan(c + d*x)*1i)^(3/2), x)